Controlling uniformity of photopolymerized microscopic hydrogels.

نویسندگان

  • Sukho Park
  • Dongshin Kim
  • Seong Young Ko
  • Jong-Oh Park
  • Sathish Akella
  • Bing Xu
  • Ye Zhang
  • Seth Fraden
چکیده

This paper studies hydrogels created by photopolymerization with a uniform beam of light. Under some conditions the density profiles of the resulting hydrogels were uniform cylinders, mirroring the illumination profiles. However, under other conditions, gels with hollow cylindrical shapes were formed. We studied the photopolymerization of poly-N-isopropylacrylamide (pNIPAAM), a hydrogel that has been widely used in tissue engineering and microfluidic applications, and examined how the size and uniformity of pNIPAAM microscopic gels can be controlled by varying parameters such as exposure time, exposure area, exposure intensity, monomer concentration, photoinitiator concentration and terminator concentration. A simplified reaction-diffusion model of the polymerization process was developed and was found to describe the experiment for a wide range of parameters. This general framework will guide attempts to establish optimal conditions for the construction of microscopic hydrogels using photolithography, which is a method that has found applications in fields such as microfluidics, drug delivery, cell and tissue culturing, and high resolution 3D printing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photopolymerizable hydrogels for tissue engineering applications.

Photopolymerized hydrogels are being investigated for a number of tissue engineering applications because of the ability to form these materials in situ in a minimally invasive manner such as by injection. In addition, hydrogels, three-dimensional networks of hydrophilic polymers that are able to swell large amounts of water, can be made to resemble the physical characteristics of soft tissues....

متن کامل

Immunologic responses of bison to vaccination with Brucella abortus strain RB51: comparison of parenteral to ballistic delivery via compressed pellets or photopolymerized hydrogels.

This study compared responses of bison calves to 10(10)CFU of Brucella abortus strain RB51 (SRB51) delivered by parenteral or ballistic methods. Two types of biobullet payloads were evaluated; compacted SRB51 pellets or SRB51 encapsulated in photopolymerized poly(ethylene glycol) hydrogels. Bison were vaccinated with saline, parenteral SRB51 alone, or in combination with Spirovac, or ballistica...

متن کامل

Miniature probe for the delivery and monitoring of a photopolymerizable material.

Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymeri...

متن کامل

Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation.

Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investiga...

متن کامل

Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)().

Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2014